Q1, (Jan 2008, Q6)

\begin{tabular}{|c|c|c|c|}
\hline (i) $\left[1 / 2 \mathrm{~m} 7^{2}=1 / 2 \mathrm{mv}{ }^{2}+2 \mathrm{mg}\right]$ \& M1 \& \multirow[b]{12}{*}{4

8} \& For using the principle of conservation of energy

\hline Speed is $3.13 \mathrm{~ms}^{-1}$ \& A1 \& \&

\hline [$\left.\mathrm{T}=\mathrm{mv}^{2} / \mathrm{r}\right]$ \& M1 \& \& For using Newton's second law horizontally and $\mathrm{a}=\mathrm{v}^{2} / \mathrm{r}$

\hline Tension is 1.96 N \& A1ft \& \&

\hline (ii) $\left[\mathrm{T}-\mathrm{mg} \cos \theta=\mathrm{mv}^{2} / \mathrm{r}\right]$ \& M1 \& \& For using Newton's second law radially

\hline \& M1 \& \& For using T = 0 (may be implied)

\hline $\mathrm{v}^{2}=-2 \mathrm{~g} \cos \theta$ \& A1 \& \&

\hline \& M1 \& \& For using the principle of conservation of energy

\hline $1 / 2 m 7^{2}=1 / 2 m v^{2}+m g(2-2 \cos \theta)$ \& A1 \& \&

\hline $[-2 \mathrm{~g} \cos \theta=49-4 \mathrm{~g}+4 \mathrm{~g} \cos \theta]$ \& M1 \& \& For eliminating v^{2}

\hline $6 \mathrm{~g} \cos \theta=-9.8$ \& A1 \& \& May be implied by answer

\hline $\theta=99.6$ \& A1 \& \&

\hline
\end{tabular}

Alternative for candidates who eliminate v^{2} before using $\mathrm{T}=0$.

(ii) $\quad\left[\mathrm{T}-\mathrm{mg} \cos \theta=\mathrm{mv}^{2} / \mathrm{r}\right]$	M 1	
	M 1	
$1 / 2 \mathrm{~m} 7^{2}=1 / 2 \mathrm{mv}^{2}+\mathrm{mg}(2-2 \cos \theta)$	A 1	
$[\mathrm{~T}-\mathrm{mg} \cos \theta=\mathrm{m}(49-4 \mathrm{~g}+4 \mathrm{~g} \cos \theta) 2]$	M 1	
$-2 \mathrm{~g} \cos \theta=49-4 \mathrm{~g}+4 \mathrm{~g} \cos \theta$	M 1	
$6 \mathrm{~g} \cos \theta=-9.8$	A 1 ft	
$\theta=99.6$	A 1	

For using Newton's second law radially For using the principle of conservation of energy

For eliminating v^{2}
For using $\mathrm{T}=0$ (may be implied)
ft error in energy equation
May be implied by answer

Q2, (Jun 2009, Q7)

i	$\begin{aligned} & \text { Gain in } \mathrm{PE}=m g a(1-\cos \theta) \\ & {\left[1 / 2 m u^{2}-1 / 2 m v^{2}=m g a(1-\cos \theta)\right]} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \end{aligned}$	For using KE loss = PE gain
	$\begin{aligned} & v^{2}=u^{2}-2 g a(1-\cos \theta) \\ & {[R-m g \cos \theta=m(\text { accel. })]} \\ & R=m v^{2} / a+m g \cos \theta \\ & {\left[R=m\left\{u^{2}-2 g a(1-\cos \theta)\right\} / a+m g \cos \theta\right]} \\ & R=m u^{2} / a+m g(3 \cos \theta-2) \end{aligned}$	A1 M1 A1 M1 A1 $[7]$	For using Newton's second law radially For substituting for v^{2} AG
ii	$\begin{aligned} & {\left[0=m u^{2} / a-5 m g\right]} \\ & u^{2}=5 a g \end{aligned}$ $\left[v^{2}=5 a g-4 a g\right]$ Least value of v^{2} is $a g$	M1 A1 M1 A1 [4]	For substituting $R=0$ and $\theta=180^{\circ}$ For substituting for $u^{2}(=5 a g)$ and $\theta=$ 180° in v^{2} (expression found in (i)) \{ but M0 if $v=0$ has been used to find $\left.u^{2}\right\}$ AG
iii	$\begin{aligned} & {\left[0=u^{2}-2 \mathrm{~g} a(1-\sqrt{3} / 2)\right]} \\ & u^{2}=a g(2-\sqrt{3}) \end{aligned}$	M1 A1 [2]	For substituting $v^{2}=0$ and $\theta=\pi / 6$ in v^{2} (expression found in (i)) Accept $u^{2}=2 \operatorname{ag}(1-\cos \pi / 6)$

ALevelMathsRevision.com

(i)	Tension in string $T=m g \sin \alpha$ For using $e=R \alpha-2 R / 3$ $1.8 \alpha-\sin \alpha-1.2=0$ Finding $f(1.175)$ and $f(1.185)$ correctly correct conclusion	M1 B1 B1 A1 M1 A1 A1 [7]	For using $T=\lambda x / L$ $m g \sin \alpha=1.2 m g\left(R a-\frac{2 R}{3}\right) \div \frac{2 R}{3}$ AG establish result ≈-0.008, and $\approx+0.0065$ $\mathrm{AG} \alpha=1.18$ correct to 3 significant figures	By iteration $\alpha=(1.2+\sin \alpha) / 1.8$ M1 start [1, 2], and 1 iteration A1 at least 1 more iteration, and conclusion 1.18(0427) A1
(ii)	Direction is towards O	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$		
(iii)	Gain in $\mathrm{EE}=1.2 m g(1.18 R-2 R / 3)^{2} \div(2 \times 2 R / 3)$ PE loss $=m g R(\cos 2 / 3-\cos 1.18)$ $\begin{aligned} & v^{2}= \\ & 2 g R\left[\cos 2 / 3-\cos 1.18-0.9(1.18-2 / 3)^{2}\right] \end{aligned}$ Acceleration is $3.29 \mathrm{~ms}^{-2}$.	M1* A1 A1 M1 Al *M1 A1 [7]	For using $\mathrm{EE}=\lambda e^{2} \div(2 L)$ and $\mathrm{PE}=m g h$ ignore signs For using $1 / 2 m v^{2}=\mathrm{PE}$ loss -EE gain For using acceleration $=v^{2} / R$	allow α for 1.18 for A1A1 allow sign errors need 1.18 here If candidates use $m R \ddot{\theta}$ use equivalent scheme

ALevelMathsRevision.com

Q4, (Jun 2012, Q4)

(i)	$\begin{aligned} & 1 / 2 m v^{2}+m g(0.6)(1-\cos \theta)=1 / 2 m 4^{2} \\ & v^{2}=4.24+11.76 \cos \theta \\ & R-0.45 g \cos \theta=0.45 \mathrm{v}^{2} / 0.6 \\ & R=3.18+13.23 \cos \theta \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[6]} \end{aligned}$	For using the pce condone \sin / cos and sign errors; need KE before and after and difference in PE AG For using Newton's $2^{\text {nd }}$ law, condone \sin / \cos and sign erorrs; 3 terms needed
(ii)	$\begin{aligned} & \cos \theta=-3.18 / 13.23 \\ & {\left[v^{2}=4.24-11.76 \times 3.18 / 13.23\right]} \end{aligned}$ Speed is $1.19 \mathrm{~ms}^{-1}$	$\begin{gathered} \text { M1 } \\ \text { A1 FT } \\ \text { M1 } \\ \text { A1 } \\ {[4]} \end{gathered}$	$\text { For using } R=0$ $-0.24036 \ldots$ or $-106 / 441$ or $\theta=103.9^{\circ} \mathrm{ft}$ from $R=A+B \cos \theta$, where $A, B \neq 0$ For substituting for $\cos \theta$ CAO without wrong working

ALevelMathsRevision.com

Q5, (Jun 2015, Q7)

(i)	$\text { using } F=m \mathrm{a}$ $T-0.2 \mathrm{~g} \cos \theta=0.2 v^{2} / 0.5$ by energy $\begin{aligned} & 1 / 2 \times 0.2 u^{2}=1 / 2 \times 0.2 v^{2}+0.2 g \times 0.5(1-\cos \theta) \\ & \mathrm{T}=5.88 \cos \theta+0.4 u^{2}-3.92 \end{aligned}$	M1 A1 M1 A1 A1 [5]	must have the right 3 terms; allow sign error / \sin for \cos for M1 AG with no errors and no gaps in argument	$v^{2}=u^{2}-9.8(1-\cos \theta)$
(ii)	when $\theta=180^{\circ}, 5.88 \cos \theta+0.4 u^{2}-3.92=0$ $-5.88+0.4 u^{2}-3.92=0$ $\min u$ is $4.95\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ OR, at top, $m g=\frac{m v^{2}}{r}$, so $v^{2}=0.5 \mathrm{~g}$ by energy $\frac{1}{2} 0.2 u^{2}=\frac{1}{2} 0.2 \times 0.5 g+0.2 g$ $\min u$ is $4.95\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	M1 A1 A1 [3] B1 M1 A1	allow inequalities for M1A1 $\frac{7}{2} \sqrt{2}$ allow inequalities for B1M1	4.9497... Not >4.95
(iii)	$\begin{aligned} & 5.88 \cos \theta+0.4 \times 12.25-3.92=0 \\ & \cos \theta=(3.92-4.9) / 5.88(=-1 / 6) \end{aligned}$ use energy eq ${ }^{\mathrm{n}}$ from (i) $\begin{aligned} & 1 / 2 \times 0.2 \times 3.5^{2}=1 / 2 \times 0.2 v^{2}+0.2 g \times 0.5(1-\cos \theta) \\ & v=0.904 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ OR use T equation from (i) $\begin{aligned} & 0-0.2 \mathrm{~g}(-1 / 6)=0.2 v^{2} / 0.5 \\ & v=0.904 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	M1 A1 M1 A1 [4] M1 A1	might see $\theta=99.6^{\circ}$ or 1.74 radians accept use of their θ $\frac{7}{30} \sqrt{15}$	99.49406..., 1.73824...rads $0.903696 \ldots$

ALevelMathsRevision.com

(i)	By energy $\frac{1}{2} m(4 a g)=\frac{1}{2} m v^{2}+m g a(1+\cos \theta)$ Use of $F=m a$ $\begin{aligned} & T+m g \cos \theta=\frac{m v^{2}}{a} \\ & T=2 m g-3 m g \cos \theta \end{aligned}$ Slack when $\cos \theta=\frac{2}{3}$ Height is $\frac{5}{3} a$	M1 A1 M1 A1 M1 A1 6	Need correct 3 terms; allow wrong sign, missing/extra g, missing m / a; \sin for cos correct Need 3 terms and g, allow sign slip, \sin for \cos Ft if their T has right form	$v^{2}=2 a g-2 a g \cos \theta$
(ii)	If $\theta>\pi / 2, \frac{1}{2} m U^{2}>m g a$ $U>\sqrt{ }(2 a g)$ For no complete revolutions $\frac{1}{2} m U^{2}<\frac{1}{2} m u^{2}+2 m g a$ and $m g=m \frac{u^{2}}{a}$ $U<\sqrt{ }(5 a g)$ OR Use $\frac{1}{2} m U^{2}=\frac{1}{2} m v^{2}+m g a(1+\cos \theta)$ and $T+m g \cos \theta=\frac{m v^{2}}{a}$ To get $T=m \frac{U^{2}}{a}-2 m g-3 m g \cos \theta$ oe When $\mathrm{T}=0, U^{2}=2 a g+3 a g \cos \theta$ $(\theta=0)$ gives $U<\sqrt{ }(5 a g)$ $\left(\theta=\frac{\pi}{2}\right)$ gives $U>\sqrt{ }(2 a g)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \\ & \text { (M1) } \\ & \text { (A1) } \\ & \text { (M1) } \\ & \text { (A1) } \\ & \text { (A1) } \end{aligned}$	Allow ' $=$ ' for all M marks Allow \geq Allow wrong sign Allow wrong sign Allow \leq Allow $\leq,<$ Allow \leq Allow \geq	u is vel at top $\sqrt{2 a g}<U<\sqrt{5 a g}$

